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ON SLOW VISCOUS FLOW
by

George F. Carrier, Brown University

1, Introduction. The flow of a viscous fluid past an
obstacle at low Reynolds Number has been the subject of numerovs
investigations, A rigorous analysis of the motion of the fluid
requires the solution of a non-linear problem but various attempts
have been made to formulate an equivalentl linear problems The
work presented here 1s a discussion of a new2 linearization of
this problem which 1s based on a conjecture rather than on any
formal procedure such as a perturbation process, The analyses
of several specific boundary value prohlems uvsing this lineariza-
tion are presented and the results are compared to those of the
clas: ical theories of Stokes [1] and Oseen (2], The results re-
ported here are in better agreement with the physical facts than
those given by the Stokes or Oseen theories. We shall compare
the point of view adcnted in these classical methods with that
adopted in ours as the analysis proceeds,

The actual dctails of the various problems treated nere
were carried out by several peonle at Brown University; the ex-
plicit references are included in the appropriate secticn. How-

ever the author 1s especially indebted to Profecsor G. Y. Morgan

1., "Equivalent" in the sense of yielding a good approximation
to the rigorous solution.

2, This linearization was actuaily used earlier on a specific
problem by J. A. Lewis and the author (3],
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who providad both the meterial and presentation of section 6.

2 The slow viscoug flow prgbtlsm. The motinn of a
viscous incompressible fluid is goveriied by the familiar laws

requiring the conservation of momentum and mass. For an isotropic
homogeneous mediun of counsvant viscoeity (i.e., p independent of

thermodynamic state) these laws take the form

-1 _

and

uJ,J = 0. (2¢2) :

Here, Uyy Py Py vy are respectively the velocity, pres-

sure, density, and kinematic viscosity. The differentiations

e e i —

are performed with regard to the physical coordinates xi.

The boundary conditions which are typical of some of
the problems of physical interest require that the velocities he
specified on the boundary curves of the region under considera-
tion. The type of problem associated with such conditions is
that in which we are interested here,

The differential equations can te put ir a dimension-
less form by introducing the following substitutions: wy = ui/uo,
Xy = xi u,/vy ¢ = p/pug. Here, u, is a characteristic velocity
of the problem, e.g., the freec stream velocity. Equations (2.1)

and (2.2) then take the form

i’:] +°,i=wi’JJ (203)

3 =0 (2.4)

. = I ——
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where the differentiations are now performed with regard to the
X4 This is the form of the equations which we shall find con-

venient but, in orcder that we may compare the classical analyses

of this problem, we note that another formulation is readily ob-
tained when one ¢lso intrsdiucss a length a which 1s characterls-

tic of the geometry of the rrotlems We can then define € = uja/v,

o
£y = xi/a, vi{ = usi/u,, and t = p/pu%. Then Eqs. (2.1) and (2.2)

take the form )

VJ,J =0 (206)

where the differentiations are taken with respect to the {1.

Stokes, who was concerned with the flow of an otherwise

undisturbed uniform stream past a solid moticnless sphere, introc-

duced a perturbation procedure using ¢ (the Reynolds number) as
the expansion parameter. That is, he used the representations
g |

=2V, (" = 2 tpg)e”
15 <= Y4n Ep €y TS Tn ﬁp €

n=0 n=0

e e e e = e i 48 e ettt

and obtained a sequence of linear probiems for the determinatioan
of the Vjn and T, when these series were introduced into Eqs.
(2.5) and (2,6) and into the boundary conditions. Whon ¢ is
sufficiently small, the rcsults of such an analysis are in excel-
lent agreement with the experimental observations (Fig. 1) for
the flow past a sphere, However, when this procedure is attempt-
ed for certain two dimensional problems, 1t is found that no :
solutions of the linear problems so fcrmed can exist, Specifi-

cally, those problems in which we require that uy = O on a closed
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curve and ul—a»uo, u,—0 as the distance from this curve in-
creases do nct admit a perturhation series of this type. Thils
fact led Oseen to modify the Stokes' procedure somewhat. Essen-

tially, using the notation of Eqs., (2,3) and (2.4), he developed

the velocity components as

1 + Wi‘*coo

]

Vi

!
W2—w2+coo,

where the primed quantities are of "higher order"3, That is, he
wrote the velocity field as the undisturbed velocity plus the
perturbation induced by the obstacle, In each of these proce-
dures; one computes only the terms of lowest order and these
give results whose macroscopic features are reasonably accurate
approvizations to the rigorous r=sult for € < 1.

An alternative way of viewing these foregoing proce-
dures (where only the first term of the expansion is found) does
not require the formal introduction of a perturbation process or
succ2ssive approximation scheme, One may consider an approxima-
tion technique where, in Eq. (2.1), we replace uy by zero (for
the Stokes model) and U, b]J (for the Oseen model), In the nota-
ticn of Eqe (2.3) then, we have

cy wi,J + °,i = wi,jj (2.7)

3+ The detailed argument can be found in [2). It is clear, how-

ever, that w} must take on the value -1 on the obstacle and
hence that wqy is not strictl¥ of higher order, Thus, Oseen's
forrulntion &an be taken as the basls of a successive approx-

ima*tion scheme but not as a formal perturbation procedure
in, say, €.

- b i, 0, s
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where ¢y = (0,0) or (1,0) for the two models in question.

In order to motivate the forthcoming suggestion for a
modification of these linearizations it is convenient (but not
necessary) to consider the two dimensional problems When we re-
strict ourselves in this way, we can write w; = wy, Wo = = wx

and Eo. (2.3) implies that

AdY = ¢y wa = A¢yo (2.8)
When we use Eq. (2.7) instead of (2.3) we obtain

AA\‘J = 01 A\bxo (2. 9)

Let us now consider obstacles with a sharp leading edge
which is positioaed at the crigine The stream function ¢ which
1s to satisfy the boundary conditions and Eqs. (2.8) or (2.9)
(depending on whether we choose the exact problem or the approxi-
mate one) must have a branch point at the origin. One sees this
in the following way. Let the boundary curve y(x) be an analytic
function near and at the sharp leading edge and consider the
fuaction uy [x,y(x)] on this curve and on its analytic continua-
ticn into the flow field. Then on the boundary, u, [x,y(x)] 1s
identically zero but on the continuation it is nots It Tollcws
that 1, is not analytic at the crigin. That is ¢ must bchave
like rB nearu r = 0 and n must lic between the values 3/2 and
2y [P = (x% + x%)%]. For a cuspital edge (see [3])) n is 3/2.
This implies that the contributions of the fourth derivatives on
the left of Eq. (2.8) for (2.9)] are more strongly singular than
those terms on the richt, This further implics that ¥ is a func-

tion whose bchavior near r = O is prcdominantly that of a

4. The singularity could be worss than this, depending on thse
leading edse shane,

e e e = — i
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biharmonic function. That is to say, if we subtract from ¥ this
singular biharmonic function the biharmonic term will be more
highly singular than ¢ - D and, in fact, ¥/D—>1 as r —0. Here
D is the biharmonic function of order r® Just mentioned.
Similarly, we csn argue that as r—» o, the viscous
terms are not of importance and v should be like a non-viscous
flow. That is, ¢ should become harmonic as r—)x®. Note that
eitner Eq. (2,8) or (2.9) admits such harmonic solutions (any-

where). The important fact to note now is that while each equa-

tion together with the boundary conditions ig cazcble of
"generating! cti i d ihar

r = d harmcnic r—> ir behavior ntermed
regi re not identical he er n _to tha
each equation will im which continues from
biharmonic behavior near » = O to the game harmonic function at
lJarge . However, it is to be hoped that if ¢y were neither ]
nor O, but had g value corresponding to some appropriately weight-
ed gverage O _ differe e v

oluti of the two 2,8 2

the average., If this should occur, then Eq. (2,9) and its bound-
ary conditions could generate a solution which was essentially
correct at large ryand near the front of the obstacle, but which
was not necessarily a very accurate approximation in between.

Since the boundary conditions are to be applied where
the solutions are hypothetically correct, however, the macro-«
scoric features of the prediction would be acceptable,

We should note that if thls sort of an "average
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equation”, (2,9), should be acceptable as a substitute for (2.8),
it is protahle that cq would be a function of the important dimen-
sionless parameter appearing in such problems, i.e., the Reynolds
number €,

Our conjecture then 1ls that there may exist a function
c(e)y O < ¢ <1, sucii that the solution of Eq. (2.8) under suit-
able boundary conditions can be "replaced" by a solution of Eq.
(2.9) with cq replaced by c(e)s If the conjecture is to be use-
ful it is necessary, of course, that ¢ depend only on &€,

In the succeeding sections we shall present the manner
in which we chose the presumably correct value of ¢ for moderately
small € and the comparison of the results of this theory with
either experimental observétion or the solution of the corres-
ponding non-linear problems It is to be noted that although we
have based our conjJecture on a motivation associated with a sharp

edged obstacle, we shall "test" it on a broader group of problems.

3¢ The flow past a long flat plate. The clascsical

problem associated with the laminar flow of a viscous f1luid past
a semi-infinite flat plate 1s the problem which gave rise to the
investigations presented in this paper. In 1948, C, C. Lin and
the author attempted a calculation of the flow in the neighborhood
of the leading edge of such a plate (4], The critical argument

of that investigation required that the region in which the lead-
ing edge solution was valid overlap the region in which the
Blzsius solution was valid, However, there seems to be no con-
vincing argument that such an overlap region existss, Before the

doubtful validity of this result was noticed, howvever, the same

e e b e e e . et
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problem was considered {3] using the Oseen formulation and at
that time the conjecture of this paper was iatroduced. In order
to force the result of this linearized problem to match the lead-
ing-edge result, the numher ¢ was given the value ¢35 The solu-
tion of the linearized problem is outlined in the appendix (the
details can be found in [3]) and the result is given by

2
P(x,y) = 2E[n erf (qcl/z) - (xe)"12(1 - 7))

£ gln) (3.1)

where £ + 1in (x + iy)l/2 and @ is the stream functions defining

the flow.

When ¢ = ,35, the velocity gradient at the plate is the
same as that found by Blasius but the behavior for large n(and
any §) differs from that of the Blasius solution. In fact, if

we denote the Blasius result by P and ours by @ then

WB = ££f(n) (3.2)

and asymptotically (for large n)
QB’\J E (2'} - 1.72 % 240 )
P v E [27] - 2(1(0)-1/2 + see ] (303)

These asymptotic developments agrec only when ¢ = .43,
It would now appear that one might choose ¢ = ,35 if
the Lin-Carrier result were believed to be valid, or ¢ = ,43 if
it seomed appropriate to match the large n behavior of the linear-

i-ed answer and the Blasius result, Thc latter can be argued

g

- ey

e s G LS
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against by noting that the Blasius result is the first term of an
asymptotic development in § and hence is valid only for § >> 1
whereas one can anticipate the validity of our linearized result
only for small {, The argument against the former has already
been noted.

Before the foregoing discrepancy was noted, we proceed-
ed to investigate the problems presented in sections (4), (5),
and (6). For moderataly low values of the Reynolds number, the
results for the problems of these sections provide excellent
agreement between the non-linear theory or experimental evidence
and the ¢ = 43 resulte This fact, however, does not justify
using .43 (or any other c¢) at high Reynolds number.

In order to determine whether any value of ¢ might be
aporopriate for the high Reynolds number problem of this section,
the flow field for the semi-infinite plate problem 1s being com-
pited from the non-linear formulation, via the relaxation method.
The investigation has not yet been completed but it is clear that
the local linearized prediction for ¢ = ,43 will not agree with
the non-linear prediction. This leads to the amusing situation
where the choice ¢ = 43 which is very good at small and moderate
values of the Reynolds number resulted from the analysis of an
infinite Reynolds number rroblem to which it is not particularly

appropriate,

4. The flow past the :ylinder and the sphere. The
application of the prescnt theory to the determination of the

flow of an otherwise undisturbed uniform stream past an obstacle

is a rather simplc matter when the corresponding Oseen recsult is
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available. A discussion of the flow past a sphere will illus-
trate this fact clearly and the extension to other obstacles
(including, cf :curse, the cylinder) is a straightforward matter.
In this discussion it is most convenient to use the notation of
Eqs (2.5)e In our linearized theory the momentum equation takes
the form
CEVy )+ Oy = Vi gy (% 1)

The Oseen theory differs from this in that ¢ is re-

placed by 1. The boundary value probhlem requires the solution

of Eqs. (2.6) and (4.1) subJect to the conditions v4 = O on

2 _ -
r = xjxj = 1 and vj-—-yblj as r—jm.,

wWe now denote the tangential velocity component asso-

ciated with the solution of the Oseen groblem (¢ = 1) by v(e,r,0)

and that associated with the modified linearization as V(e,r,®),
It 1s readily seen that V(e,r,0) = v(ce,r,0). The other velocity
components and the pressure may be related in the same way. The
friction drag on the sphere (according to the present theory) is

given by

A

D =2mp usa| V,(e,1,0) sin°0 e

J

230

n

2
amp uga | v,(ce,1,0) sin®e de

\J

0

and the corresponding drag coefficient is given by

2

Cp = (K/puja) Y‘Vr(°€7l’9) sin®@ de.

¥

0

However, the friction drag coefficient Cé, given by the Oceen
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theory for Reynolds number ce 1is
)¢

' 2
Cp = ﬁ; v.(ce,1,0) sin“0 dé

so that

CD =c CI')(CE). 4e2)

The contributions to the drag of the pressure veriation over the
sphere are related in the same vay. Thus, Eq. (4. 2) expresses
the drag coefficient relationship for the two theories for the
gross drag or for either contribution., The same formula is valid
for the cylinder or any other obstacle family characterized by a
single length parametecr.

In view of this result we may use the results of drag
coefficient calculations of previous authors to find those asso-
ciated with our theory, Figure (4.1) indicates the recsults of
this calculation for the cylinder using the figures obtained by
Bairstow [8] and also indicate some cxnerimental evidence con-
cerning the drag. Figure (4.2) indicates the corresponding evi=-
dence for the spheres It 1s cleer that the present thcory with
c = +43 gives a much more accurate prediction of the drag than

do previous accounts of the matter.

5 The finite flat plates In this scction the low
Reynolds number flow past a flat plate will be discusseds The

formulation of the problem diff.rs from that of the appendix only
in the rospect that the boundary conditiontby = ~1l,0ony =0,
x > 0, aoplics only when x < a, Here a is the length of the

plate in units v/uge
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The analysis of this problem follows that of the appen=-
dix up to Eg. (3.4). At that stage of the preceedings, it 1is

convenient to note that

(E)
2((-1k)1/2[((+1k)1/2+((+i)1/2]

] (§,a) = = ?(E)-}'—l(ﬁ) (5.1)

y

and to anply the inversion integrel to each side of this eguztion
using the convolution theorem to evaluate the right hand siae.

We obtain5 a
¢y(x,0) = J\f(t)h(x - 1)dx
0

where cx/2

h(x) = (=) e¥ k| uldu. |

0 1
Since f(x) must have a singularity ot order % at x = 0 and at

x = a, it 1s convenient to write

£(x) = g(x)/Vx(a - x)

wy(x,o) = | g)h(x - )/ Vr(a - t)])dr.
0
The substitutions T = a sin29, X = a sinZO, lead to the equation

n/2
2 2 2
wy(x,o) =1 = g(la sin @) h (a sin“® - a sin“@)de.
0

This iategral equation for g may now be solved either

by finding the coefficient of the expansion

gla sin0) =T a, "

5. A more detailed account of tnis analysis can be found in [6].
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or by a numerical process. It turns out that an excellent approx-

imation to g for moderate values of a is given by

g(a sin°Q) = A(a) + B(a)(® - »/4).

The quantities A and B are plotted in Fig. (5.1). In particular,
the drag is given by pU,mA/2. The [low past a finite flat plate
according to the non-linear theory, Eqs. (2.1) and (2.2), has
been found by Munier [?]s Using the relaxation technique the
flow field [i.e., uy(x,y), p(x,y)] has been computed for a = 4
and, in particular, the 2locity gradient at the plate has been
recorded. This velocity gradient as deduced from each of these
theories is given “n Fig. (5.2). The agreement of the results
of the linearized theory with those of the non-linear theory is
surprisingly good,

6. The Wi vedge ed re « In this section
ve shall present the linearized analysis of the converging flow
in a wedze shaped region and compare the results to the exact
solution obtained by Hamel. This prohlem is not in the category
for which the linearization is designed. However, it is of inter-
est to sce how well the flow is predicted by this theory.

We start from Eqs. (2.1) and (2.2) and use the radial
coordinates r,®. The flow proceeds towards the origin in the
wedge shaped region - 6, < ® <6, We look for solutions

Y = P(8) corresponding to which the radial velocity is given by

Y4
PXRN

s

'8 = r'1¢'(9) and the circumferential velocity vanishes

everywhaere, We denote by & (the Reynolds number) the quantity
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URp/p where u(r,0) = - U'g and u(r,@) can be written

u(r,8) = - (UR/r)yx'(8).

Equation (2.1) and (2.2) ncw yield
=1l -
AAX 4+ e X (AX)r = Q. (60 1)
Since X is a function of @ only
XIV + by" = 2exiy" = O. (6.2)

Note, however, that in Eq. (6.1), the quantity x'/r corresponds
to tne coefficient vj in Ba. (2.5) and hence corresponds roughly
to the term which is replaced by unity in the Oseen treatment

and by ¢ in ours. However, it is profitable to retain the infor-
mation that u behaves like 1/r and to replace y' by ¢ retaining
the 1/r contribution. This, clearly, is in the spirit of our
approximation technique since X'(O) varies from unity to zero and

has some "average", c. Our lineariged equation then takes the

form
XIV + l}x" - 2CEX" = 0, (603)

6.1, The exact result. Equation (£.2) can be inte-

grated twice to yield
2
i!él_ + 2w2 -£wd4Cw =D (6. 1t)

where C and D are arbitrary constants which must be determined

and we have put w = x', We have x'(0) = 1 and therefore w(0) = 1.

Also, because of the symmetry about © = 0, we must have w'(0) = O,

These two conditions together with Eq. (6.4) give the fnllowing

relation
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2-£4+¢C=0D (6.5)
3
Hence (6.4) becomes
L!_z’_)_2.+2w2-%w3+Cw=C--§+2. (6.6)

To integrate Eq. (6.6) we rewrite it as follows:

2
Gl ot - A-Suea-Las) 6

We now factor the expression in square brackets so as to obtain

(6,7) in the form

(W) =5 el = DW= a)w - ay) (648)

where

a1=%{(%-1) +W1-%)2+

a, =12-{<g v -Ya- 6% 4

ofF

(3¢ +6 = ¢) }

I+

(3¢ + 6 - )}

€

Using Eq. (6.6) and the boundary condition of viscous
flow that w(+ ©,) = O, we see that C = % + 2 > 0 and hence that

(-8 +% Ge+6-e) 50

Thus al and a2 are real,

Equation (6.8) can nov be integrated in terms of ellip~-

tic functions. We have Irom (6,8)

wt! = + VC% eV(w - 1)(w - ay)(w - a5) . (6.9)

Since w(0) = 1 and w(+ 6,) = O, we expect that w will range between
0 and 1 and that w'! > O hetween ~65 aiid O and w' < O between O

and 6,. Hence the positive sign in (6,9) holds for & < O,

MWIRMW-
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Let us integrate from -0, to some non-positive angle

0. P

\’éL a = J dn = @ + 9, (€.10)
€

o V& - 1) - a))(E - a) g

0<0

Now a and a, still contain an unknown constant C which must be

evaluated from the condition that w = 1 and @ = O. Hence

\/_252 [ oL = Q40 (6.11)
)

0 V(E = 1)(( = al)(g G 82)

Upon integration, Eq. (6.11) will furnish, in terms of elliptic

functions, a formula relating C, &, and 00. Substituting this

into (6.10) and integrating we obtain the solution of the problem.
Tables of elliptic integrals give the following relation

dt = 2 sn-l(V /G-Y B-w \/E"—Y-)
) V@ - DB -D& -v) Va_y B-y a-w Va-y

(6412)

a>pB>w> y. The inequality is satisfied, as we shall soon

see, 1f we let aj = a, 1 =B, a, = ¥o Now
W 1 1
_ _ ’ £
43 0 w W

by using Eq, (6.11). Hence, using (6.10), we have:
1

‘I at = %Eo. (6,13)
V@@, < D - O - a,)

e e —— = = _;_:ﬂéaiﬂiﬂ-iiiiéééiégsik

-

o -
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We now consider three special cases corresponding to
different ranges of the Reynolds number, €.
(a) € < 63 special case € = 1,

For € =1, the roots a,, A, are

a1 =% {5+\[1:5_+_1—2_c}
oy =3 [5-Po5 7 1e ]

We previously saw that C > % - 2, Hence a; > 5, a, < 0, and the
inequality in (6-12) 1is satisfied.
(b) E = 60

In this case the roots are

E c
a1= 72, 82=-\I-§o

To estimate the values of ay and a, we make use of another in-
equality containing C. Since u(r,0) will have a minumum at
® = 0, w(0) will have a raximum there, and hence w"(0) < O,

Now the first integral of Eq. (6.3) is

2

w' + by - ew© + C = 0,

This equation, together with w(0) = 1 and w"(0) = 0
giveg C > € « L4,

Hence, we have for € = 6:
as > 1, a, <=1

and the inequality in (6.12) is ozain satisfied,
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(c) € > 6, speclal case € = 120,

The procedure of cases (a) and (b) leads to a; > 1 and
ap < - 2, so that our integration formula again holds,

Since Eq. (6.11) gives @, in terms of € and C, the pro-
cedure followed in the numerical computation 1s to pick a value
of C for a given ¢ and to find the corresponding 65, It is due
to this that the calculations for the three values of e were not
carried out for one and the same wedge ancle, but rather for

threce angles which are only approximately equal.

Wall Drag. The formula for the drag can immediately
be obtained from (6.6) by putting w = O, This gives

w%-%)=d§\hC-e+6. (6.14)

The drag 1s readily obtained from this by recalling that u(r,8) =

- -ILJ W(g)o
r

6¢ 2. e rized result, In thils section we dec-
note the radial velocity component by 1 + £(8) and Eqe. (6.3)

becomes
‘ £ 4+ (4 - 2ce)f? = 0 {(6,15)

and the boundary conditions are f(0) = 0 and f(+ 0,) = - 1. We

denote 4 - 2ce by s2 and distinguish the three cases, s2 < 0,

8 = o, 32 > 0, The avpropriate sclutions of Eq. (6.15) are

cOs8 8O0 - cOS sOO

w=1l+7¢f= (6416)
1l - cos sOo




Nonr-653-00/1

2
Ww=zl+f=1a-2 (6417)
03

cosh s8'@ - cosh 8'0
w=1l+¢f= ° (6.18)
1l - cosh s'Oo

where s!' = - s,
The velocity gradients at the wall can be found imme-

diately. They are:

in 89
(a) € <& wi(- Oo) - 230 %% (6.19)
c 1 - cos sO,
(b) € =3 wi(- 9) = g% (6.20)
? [}
(©) ¢ >2 Wi(s Gg) = i 88 (6.21)

1 - cosh s'9,

6+3s Boundary layer solution. As a matter of interest

we consider the boundary layer solution of this problem, We

start from Eq. (6.3) and integrate it once to obtain

W' + by - ew® + C = O, (6422)

In the exact solution we determined C from the conditicn i

that w(0) = 1. In the boundary layer solution we demand only

that w approach unity asymptotically as we go away from the wall,
Hence C can only be determined in the limit as e—> .,

In the interior, we expect w and its derivatives to be

of order one; hence, for sufficiently large e, Eq. (6+22) becomes

approximately 5
- ewWw™ +C =0, (6023)
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Since w is to be one on @ = 0, we see that C must be
equal to € within the order of approximation of the bcundary
layer theory.

Following the usual procedure in boundary layer theory

we transform to a new independent variable
9= eY%6, - 0), w®) = (e (6424)

in which T and its derivatives are all of order one. We have

et + 4t - 512 + ¢ = 0, (6425)

For € approaching infinity this gives the approximate

boundary layer equation

T - 12 +1=0. (6626)
The boundary conditions w(@) = 1 and w(®,) = O transform to
1im T =1 =and 1(0) = O, (6.27)

¢ —®
One integration of (6.26) gives

11'22 <3
-T‘P‘::D. (6128) i

To evaluate D we apply the condition that T—1 as ¢ 3o, and

hence t!'-—-50 as 9—»wc, This gives O = 2/3. We can now write

1)2(1' + 2) (6429)

df] = \/% Pe (60 30)

(1")° = g (1

and
T

at - /
-0 Vi(z + E) \

1

whv
(@)

I8
I

&
M
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Upon integration and substitution of w and 6 in terms
of T and ¢ this leads to the following solution:

6o - 0= \B ot 32 -t B3, (o

The velocity gradient at the wall can be found from
Eq. (6.29) by putting T = 0. Hence

(71(0))2 = 4/3

d
=1 2 ve. (6.32)

wi(= 00) Y:
3

The most important test for applicability of the various
approximate theories is prohably to be found in the values they
predict for the velocity gradient at the wall. An inspection of
the table of results shows that, for the problem at hand, both
the standard and the modified Oseen technique give results that
are accurate to within a few percent for € =1 and € = £, but
that the modified method is appreciably better. For & of the
order 100, the Oseen methods are gquite inaccurate, but the bound-
ary layer soluition is already fairly goods It is interesting to
note (see Fig. 6) that the velocity profile as calculated by
boundary layer theory is very close to ths exact profile in a
region starting at the wall and extending to nearly one third the

total channel width,

7« Conc iongs It is evident that, in the foregoing
moderate Reynolds number problems, a successful prediction of the
macroscopic feature of the flow are given by the linearized

theory with ¢ = (43, It can safely be anticinated that an
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equally successful application can be anticipated for other flows

of a similar nature. For more complicated problems, €.g., the
flow past a plate of finite chord at non-zero incidence, no con-
clusion can be drawn until such flows have been investigated.
Similarly, it is not clear whether the range ot applicability can
be increased by finding a c(e) for larger ¢ than those consldered

here.
8. Appendix. The boundary value problem of section
(3) is:
AMY = cAy, = O (269)
and

$(x,0) = O; ¢y(x,0) = =1 for x > 0.

The soluticn as given in [3] is found by using Fourier

transiorm. We define

(00)
(Eyn) = Jrf e-i(:x}rwtb(x,y)dxdye (8.1)
)

and note that v, wy, and wyyy are continuous across the plate,
We denote by f{x) the jumps in ﬂ&y(x,o). Using the foregoing,
Eq. (2.9) becomes

(E + )2+ 1c@ + )W = - 1F(E). (8.2)

Equation (8.2) may conveniently be thought of as the limit as
k—>0 of the equation

2

(€% + 0% + 1K) + (€ + 1108 = 1k = - inf.  (8.3)

We may also note that the boundary condition on wy at the plate
1s the limit as a—30 of wy(x,o) = e”% for x > 0, We may now
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define - _
-
and obtain
T ‘ 1/2 1/2
FE,y) = |Y|f[exp'{- IY|(52+k2)1/2} -exp-{- Iyl (£ +1) / (g ~1k) / 1
" =

21(1 - X)(& - 1ik)
s ¢ (8.4

We may now define Ey(E,O) = ﬁo(x) x ﬁl(x) where u,(x) = e=ax

where x > 0 and u,(x) = O when x < O,
We may now use the usual Wiener-Hopf arguments to find
T(£) [the details a~e to be found %n [3] ] and find, when kx—0,

a—7>0
! ? = 21(1/:)1/20

(8.5)

We now can invert Eq. (8.4) using this form for £ and

we obtain

/

- -1/2 2
2t[(n erft (n Ve) - (me) L (1 -e"¢") ]

Y(x,y) +y

(g(ﬂ)o (806)

1/2
Here, £ + in = (x + 1y) / and ¥ + y 1s the stream function for

the complete flows The bracket is denoted by g(n) for conve-
nienceé.

Consistent now with the motivation of section (1) we
would like to choose ¢ so that this solution agrees with the solu-
tion of the precise problem both near the plate leading edge and
far from the plate, Our only information is that for large dis-

tances downstream of the leading edge (x > 20, say), the far

s This evnlicit result (i.e., Ea. (8.6)) was not included in [3).




T et

Nonr=-653-00/1 2k
field solution is given by

Vg~ £ £(1n) (8.7)

whare f{n) ~ 2« 1,72 + ¢4+ « The remaining terms do not corres-

£g(n)
bescomes the same as that of Eq, (8.7) provided we choose ¢ = 43,

pond to a harmonic function. The asymptotic behavior of ¢

Thus, if any function c(€) 1s to accomplish the purpose outlined
in section (1), its value as ¢ —o should be .43, In Fig. (8.1)
the function f£'(n) and g'(n) are plotteds One should note that

If’/g' - 1| 1is never greater than .1, the most serious discrepan-

cy occurring at the plate surface.

=4 ——TT -
: T -— v M m“.-—'l
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Ta of r ct 6),
wi(~ 9,)
® exact Standard tiodified Boundary
e solution Oseen Oseen Layer
radians c = 43
1 «295 6.63 6.67 6e62 -
6 [ 3l+)+ 6. 00 60 26 5. 88 =i
120 279 13.11 19.79 10.%7 12,65
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